API Reference

polars_bloomberg.BQuery

Provides methods to query Bloomberg API and return data as Polars DataFrames.

Example

Create a BQuery instance and fetch last price for Apple stock:

from polars_bloomberg import BQuery

with BQuery() as bq:
    df = bq.bdp(['AAPL US Equity'], ['PX_LAST'])
print(df)

Expected output:

shape: (1, 2)
┌────────────────┬──────────┐
│ security       ┆ PX_LAST  │
│ ---            ┆ ---      │
│ str            ┆ f64      │
╞════════════════╪══════════╡
│ AAPL US Equity ┆ 171.32   │
└────────────────┴──────────┘
Source code in polars_bloomberg\plbbg.py
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
class BQuery:
    """Provides methods to query Bloomberg API and return data as Polars DataFrames.

    Example:
        Create a BQuery instance and fetch last price for Apple stock:

        ```python
        from polars_bloomberg import BQuery

        with BQuery() as bq:
            df = bq.bdp(['AAPL US Equity'], ['PX_LAST'])
        print(df)
        ```

        Expected output:
        ```python
        shape: (1, 2)
        ┌────────────────┬──────────┐
        │ security       ┆ PX_LAST  │
        │ ---            ┆ ---      │
        │ str            ┆ f64      │
        ╞════════════════╪══════════╡
        │ AAPL US Equity ┆ 171.32   │
        └────────────────┴──────────┘
        ```

    """

    def __init__(
        self,
        host: str = "localhost",
        port: int = 8194,
        timeout: int = 32_000,
        debug: bool = False,
    ) -> None:
        """Initialize a BQuery instance with connection parameters.

        Args:
            host (str, optional):
                The hostname for the Bloomberg API server.
                Defaults to "localhost".
            port (int, optional):
                The port number for the Bloomberg API server.
                Defaults to 8194.
            timeout (int, optional):
                Timeout in milliseconds for API requests.
                Defaults to 32000.
            debug (bool, optional):
                Enable debug logging/saving of intermediate results.
                Defaults to False.

        Raises:
            ConnectionError: If unable to establish connection to Bloomberg API.

        """
        self.host = host
        self.port = port
        self.timeout = timeout
        self.session = None
        self.debug = debug

    def __enter__(self):  # noqa: D105
        # Enter the runtime context related to this object.
        options = blpapi.SessionOptions()
        options.setServerHost(self.host)
        options.setServerPort(self.port)
        self.session = blpapi.Session(options)

        if not self.session.start():
            raise ConnectionError("Failed to start Bloomberg session.")

        # Open both required services
        if not self.session.openService("//blp/refdata"):
            raise ConnectionError("Failed to open service //blp/refdata.")
        if not self.session.openService("//blp/bqlsvc"):
            raise ConnectionError("Failed to open service //blp/bqlsvc.")

        return self

    def __exit__(self, exc_type, exc_val, exc_tb):  # noqa: D105
        # Exit the context manager and stop the Bloomberg session.
        if self.session:
            self.session.stop()

    def bdp(
        self,
        securities: list[str],
        fields: list[str],
        overrides: list[tuple] | None = None,
        options: dict | None = None,
    ) -> pl.DataFrame:
        """Bloomberg Data Point, equivalent to Excel BDP() function.

        Fetch reference data for given securities and fields.

        Args:
            securities (list[str]): List of security identifiers (e.g. 'AAPL US Equity').
            fields (list[str]): List of data fields to retrieve (e.g., 'PX_LAST').
            overrides (list[tuple], optional): List of tuples for field overrides. Defaults to None.
            options (dict, optional): Additional request options. Defaults to None.

        Returns:
            pl.DataFrame: A Polars DataFrame containing the requested reference data.

        Raises:
            ConnectionError: If there is an issue with the Bloomberg session.
            ValueError: If the request parameters are invalid.

        Example:
            Fetch last price for Apple and Microsoft stocks:

            ```python
            from polars_bloomberg import BQuery

            with BQuery() as bq:
                df = bq.bdp(['AAPL US Equity', 'MSFT US Equity'], ['PX_LAST'])
            print(df)
            ```

            Expected output:
            ```python
            shape: (2, 2)
            ┌────────────────┬──────────┐
            │ security       ┆ PX_LAST  │
            │ ---            ┆ ---      │
            │ str            ┆ f64      │
            ╞════════════════╪══════════╡
            │ AAPL US Equity ┆ 171.32   │
            │ MSFT US Equity ┆ 232.33   │
            └────────────────┴──────────┘
            ```

        """  # noqa: E501
        request = self._create_request(
            "ReferenceDataRequest", securities, fields, overrides, options
        )
        responses = self._send_request(request)
        data = self._parse_bdp_responses(responses, fields)
        return pl.DataFrame(data)

    def bdh(
        self,
        securities: list[str],
        fields: list[str],
        start_date: date,
        end_date: date,
        overrides: list[tuple] | None = None,
        options: dict | None = None,
    ) -> pl.DataFrame:
        """Bloomberg Data History, equivalent to Excel BDH() function.

        Fetch historical data for given securities and fields between dates.

        Args:
            securities (list[str]): List of security identifiers (e.g., 'AAPL US Equity').
            fields (list[str]): List of data fields to retrieve (e.g., 'PX_LAST').
            start_date (date): Start date for the historical data.
            end_date (date): End date for the historical data.
            overrides (list[tuple], optional): List of tuples for field overrides. Defaults to None.
            options (dict, optional): Additional request options. Defaults to None.

        Returns:
            pl.DataFrame: A Polars DataFrame containing the requested historical data.

        Raises:
            ConnectionError: If there is an issue with the Bloomberg session.
            ValueError: If the request parameters are invalid.

        Example:
            Fetch historical closing prices for TLT:

            ```python
            from datetime import date
            from polars_bloomberg import BQuery

            with BQuery() as bq:
                df = bq.bdh(
                    ["TLT US Equity"],
                    ["PX_LAST"],
                    start_date=date(2019, 1, 1),
                    end_date=date(2019, 1, 7),
                )
            print(df)
            ```

            Expected output:
            ```python
            shape: (4, 3)
            ┌───────────────┬────────────┬─────────┐
            │ security      ┆ date       ┆ PX_LAST │
            │ ---           ┆ ---        ┆ ---     │
            │ str           ┆ date       ┆ f64     │
            ╞═══════════════╪════════════╪═════════╡
            │ TLT US Equity ┆ 2019-01-02 ┆ 122.15  │
            │ TLT US Equity ┆ 2019-01-03 ┆ 123.54  │
            │ TLT US Equity ┆ 2019-01-04 ┆ 122.11  │
            │ TLT US Equity ┆ 2019-01-07 ┆ 121.75  │
            └───────────────┴────────────┴─────────┘
            ```

        """  # noqa: E501
        request = self._create_request(
            "HistoricalDataRequest", securities, fields, overrides, options
        )
        request.set("startDate", start_date.strftime("%Y%m%d"))
        request.set("endDate", end_date.strftime("%Y%m%d"))
        responses = self._send_request(request)
        data = self._parse_bdh_responses(responses, fields)
        return pl.DataFrame(data)

    def bql(self, expression: str) -> BqlResult:
        """Execute a Bloomberg Query Language (BQL) query.

        BQL is Bloomberg's domain-specific language for complex financial queries. It allows
        for advanced data retrieval, screening, and analysis.

        Args:
            expression (str): The BQL query expression to execute. Can include functions like
                get(), let(), for(), filter(), etc.

        Returns:
            BqlResult: An object containing:
                - List of Polars DataFrames (one for each item in BQL get statement)
                - Helper methods like combine() to merge DataFrames on common columns

        Raises:
            ConnectionError: If there is an issue with the Bloomberg session.
            ValueError: If the BQL query syntax is invalid.

        Example:
            Simple query to fetch last price:

            ```python
            from polars_bloomberg import BQuery

            with BQuery() as bq:
                # Get last price for multiple securities
                result = bq.bql("get(px_last) for(['IBM US Equity', 'MSFT US Equity'])")
                df = result.combine()
                print(df)
            ```

            Expected output:
            ```python
            shape: (2, 4)
            ┌───────────────┬─────────┐
            │ ID            ┆ PX_LAST │
            │ ---           ┆ ---     │
            │ str           ┆ f64     │
            ╞═══════════════╪═════════╡
            │ AAPL US Equity┆ 150.25  │
            │ MSFT US Equity┆ 250.80  │
            └───────────────┴─────────┘
            ```

            Access individual DataFrames:
            ```python
            >>> df_px_last = result[0]
            >>> print(df_px_last)
            shape: (2, 2)
            ┌───────────────┬─────────┐
            │ ID            ┆ PX_LAST │
            │ ---           ┆ ---     │
            │ str           ┆ f64     │
            ╞═══════════════╪═════════╡
            │ AAPL US Equity┆ 150.25  │
            │ MSFT US Equity┆ 250.80  │
            └───────────────┴─────────┘
            ```
            Fetch multiple fields and combine results:
            ```python
            >>> result = bq.bql("get(px_last, px_volume) for('AAPL US Equity')")
            >>> df_combined = result.combine()
            >>> print(df_combined)
            shape: (1, 3)
            ┌───────────────┬─────────┬────────────┐
            │ ID            ┆ PX_LAST ┆ PX_VOLUME  │
            │ ---           ┆ ---     ┆ ---        │
            │ str           ┆ f64     ┆ f64        │
            ╞═══════════════╪═════════╪════════════╡
            │ AAPL US Equity┆ 150.25  ┆ 30000000.0 │
            └───────────────┴─────────┴────────────┘
            ```
            Iterate over individual DataFrames:
            ```python
            >>> for df in result:
            ...     print(df)
            ```

        """  # noqa: E501
        request = self._create_bql_request(expression)
        responses = self._send_request(request)
        tables = self._parse_bql_responses(responses)
        dataframes = [
            pl.DataFrame(table.data, schema=table.schema, strict=True)
            for table in tables
        ]
        names = [table.name for table in tables]
        return BqlResult(dataframes, names)

    def _create_request(
        self,
        request_type: str,
        securities: list[str],
        fields: list[str],
        overrides: Sequence | None = None,
        options: dict | None = None,
    ) -> blpapi.Request:
        """Create a Bloomberg request with support for overrides and options."""
        service = self.session.getService("//blp/refdata")
        request = service.createRequest(request_type)

        # Add securities
        securities_element = request.getElement("securities")
        for security in securities:
            securities_element.appendValue(security)

        # Add fields
        fields_element = request.getElement("fields")
        for field in fields:
            fields_element.appendValue(field)

        # Add overrides if provided
        if overrides:
            overrides_element = request.getElement("overrides")
            for field_id, value in overrides:
                override_element = overrides_element.appendElement()
                override_element.setElement("fieldId", field_id)
                override_element.setElement("value", value)

        # Add additional options if provided
        if options:
            for key, value in options.items():
                request.set(key, value)

        return request

    def _create_bql_request(self, expression: str) -> blpapi.Request:
        """Create a BQL request."""
        service = self.session.getService("//blp/bqlsvc")
        request = service.createRequest("sendQuery")
        request.set("expression", expression)
        return request

    def _send_request(self, request) -> list[dict]:
        """Send a Bloomberg request and collect responses with timeout handling."""
        self.session.sendRequest(request)
        responses = []
        while True:
            # Wait for an event with the specified timeout
            event = self.session.nextEvent(self.timeout)
            if event.eventType() == blpapi.Event.TIMEOUT:
                # Handle the timeout scenario
                raise TimeoutError(
                    f"Request timed out after {self.timeout} milliseconds"
                )
            for msg in event:
                # Check for errors in the message
                if msg.hasElement("responseError"):
                    error = msg.getElement("responseError")
                    error_message = error.getElementAsString("message")
                    raise Exception(f"Response error: {error_message}")
                responses.append(msg.toPy())
            # Break the loop when the final response is received
            if event.eventType() == blpapi.Event.RESPONSE:
                break
        return responses

    def _parse_bdp_responses(
        self, responses: list[dict], fields: list[str]
    ) -> list[dict]:
        data = []
        for response in responses:
            security_data = response.get("securityData", [])
            for sec in security_data:
                security = sec.get("security")
                field_data = sec.get("fieldData", {})
                record = {"security": security}
                for field in fields:
                    record[field] = field_data.get(field)
                data.append(record)
        return data

    def _parse_bdh_responses(
        self, responses: list[dict], fields: list[str]
    ) -> list[dict]:
        data = []
        for response in responses:
            security_data = response.get("securityData", {})
            security = security_data.get("security")
            field_data_array = security_data.get("fieldData", [])
            for entry in field_data_array:
                record = {"security": security, "date": entry.get("date")}
                for field in fields:
                    record[field] = entry.get(field)
                data.append(record)
        return data

    def _parse_bql_responses(self, responses: list[Any]):
        """Parse BQL responses into a list of SITable objects."""
        tables: list[SITable] = []
        results: list[dict] = self._extract_results(responses)

        for result in results:
            tables.extend(self._parse_result(result))
        return [self._apply_schema(table) for table in tables]

    def _apply_schema(self, table: SITable) -> SITable:
        """Convert data based on the schema (e.g., str -> date, 'NaN' -> None)."""
        date_format = "%Y-%m-%dT%H:%M:%SZ"
        for col, dtype in table.schema.items():
            if dtype == pl.Date:
                table.data[col] = [
                    (
                        datetime.strptime(v, date_format).date()
                        if isinstance(v, str)
                        else None
                    )
                    for v in table.data[col]
                ]
            elif dtype in {pl.Float64, pl.Int64}:
                table.data[col] = [None if x == "NaN" else x for x in table.data[col]]
        return table

    def _extract_results(self, responses: list[Any]) -> list[dict]:
        """Extract the 'results' section from each response, handling JSON strings."""
        extracted = []
        for response in responses:
            resp_dict = response
            if isinstance(response, str):
                try:
                    resp_dict = json.loads(response.replace("'", '"'))
                except json.JSONDecodeError as e:
                    logger.error("Failed to decode JSON: %s. Error: %s", response, e)
                    continue
            results = resp_dict.get("results")
            if results:
                extracted.append(results)
        return extracted

    def _parse_result(self, results: dict[str, Any]) -> list[SITable]:
        """Convert a single BQL results dictionary into a list[SITable]."""
        tables: list[SITable] = []
        for field, content in results.items():
            data = {}
            schema_str = {}

            data["ID"] = content.get("idColumn", {}).get("values", [])
            data[field] = content.get("valuesColumn", {}).get("values", [])

            schema_str["ID"] = content.get("idColumn", {}).get("type", "STRING")
            schema_str[field] = content.get("valuesColumn", {}).get("type", "STRING")

            # Process secondary columns
            for sec_col in content.get("secondaryColumns", []):
                name = sec_col.get("name", "")
                data[name] = sec_col.get("values", [])
                schema_str[name] = sec_col.get("type", str)
            schema = self._map_types(schema_str)
            tables.append(SITable(name=field, data=data, schema=schema))

        # If debug mode is on, save the input and output for reproducibility
        if self.debug:
            self._save_debug_case(results, tables)

        return tables

    def _map_types(self, type_map: dict[str, str]) -> dict[str, pl.DataType]:
        """Map string-based types to Polars data types. Default to Utf8."""
        mapping = {
            "STRING": pl.Utf8,
            "DOUBLE": pl.Float64,
            "INT": pl.Int64,
            "DATE": pl.Date,
            "BOOLEAN": pl.Boolean,
        }
        return {col: mapping.get(t.upper(), pl.Utf8) for col, t in type_map.items()}

    def _save_debug_case(self, in_results: dict, tables: list[SITable]):
        """Save input and output to a JSON file for debugging and test generation."""
        # Create a directory for debug cases if it doesn't exist
        os.makedirs("debug_cases", exist_ok=True)

        # Create a unique filename with timestamp
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"debug_cases/bql_parse_results_{timestamp}.json"

        # Prepare serializable data
        out_tables = []
        for t in tables:
            out_tables.append(
                {
                    "name": t.name,
                    "data": t.data,
                    "schema": {col: str(dtype) for col, dtype in t.schema.items()},
                }
            )

        to_save = {"in_results": in_results, "out_tables": out_tables}

        with open(filename, "w", encoding="utf-8") as f:
            json.dump(to_save, f, indent=2)

        logger.debug("Saved debug case to %s", filename)

__init__(host='localhost', port=8194, timeout=32000, debug=False)

Initialize a BQuery instance with connection parameters.

Parameters:

Name Type Description Default
host str

The hostname for the Bloomberg API server. Defaults to "localhost".

'localhost'
port int

The port number for the Bloomberg API server. Defaults to 8194.

8194
timeout int

Timeout in milliseconds for API requests. Defaults to 32000.

32000
debug bool

Enable debug logging/saving of intermediate results. Defaults to False.

False

Raises:

Type Description
ConnectionError

If unable to establish connection to Bloomberg API.

Source code in polars_bloomberg\plbbg.py
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def __init__(
    self,
    host: str = "localhost",
    port: int = 8194,
    timeout: int = 32_000,
    debug: bool = False,
) -> None:
    """Initialize a BQuery instance with connection parameters.

    Args:
        host (str, optional):
            The hostname for the Bloomberg API server.
            Defaults to "localhost".
        port (int, optional):
            The port number for the Bloomberg API server.
            Defaults to 8194.
        timeout (int, optional):
            Timeout in milliseconds for API requests.
            Defaults to 32000.
        debug (bool, optional):
            Enable debug logging/saving of intermediate results.
            Defaults to False.

    Raises:
        ConnectionError: If unable to establish connection to Bloomberg API.

    """
    self.host = host
    self.port = port
    self.timeout = timeout
    self.session = None
    self.debug = debug

bdh(securities, fields, start_date, end_date, overrides=None, options=None)

Bloomberg Data History, equivalent to Excel BDH() function.

Fetch historical data for given securities and fields between dates.

Parameters:

Name Type Description Default
securities list[str]

List of security identifiers (e.g., 'AAPL US Equity').

required
fields list[str]

List of data fields to retrieve (e.g., 'PX_LAST').

required
start_date date

Start date for the historical data.

required
end_date date

End date for the historical data.

required
overrides list[tuple]

List of tuples for field overrides. Defaults to None.

None
options dict

Additional request options. Defaults to None.

None

Returns:

Type Description
DataFrame

pl.DataFrame: A Polars DataFrame containing the requested historical data.

Raises:

Type Description
ConnectionError

If there is an issue with the Bloomberg session.

ValueError

If the request parameters are invalid.

Example

Fetch historical closing prices for TLT:

from datetime import date
from polars_bloomberg import BQuery

with BQuery() as bq:
    df = bq.bdh(
        ["TLT US Equity"],
        ["PX_LAST"],
        start_date=date(2019, 1, 1),
        end_date=date(2019, 1, 7),
    )
print(df)

Expected output:

shape: (4, 3)
┌───────────────┬────────────┬─────────┐
│ security      ┆ date       ┆ PX_LAST │
│ ---           ┆ ---        ┆ ---     │
│ str           ┆ date       ┆ f64     │
╞═══════════════╪════════════╪═════════╡
│ TLT US Equity ┆ 2019-01-02 ┆ 122.15  │
│ TLT US Equity ┆ 2019-01-03 ┆ 123.54  │
│ TLT US Equity ┆ 2019-01-04 ┆ 122.11  │
│ TLT US Equity ┆ 2019-01-07 ┆ 121.75  │
└───────────────┴────────────┴─────────┘
Source code in polars_bloomberg\plbbg.py
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
def bdh(
    self,
    securities: list[str],
    fields: list[str],
    start_date: date,
    end_date: date,
    overrides: list[tuple] | None = None,
    options: dict | None = None,
) -> pl.DataFrame:
    """Bloomberg Data History, equivalent to Excel BDH() function.

    Fetch historical data for given securities and fields between dates.

    Args:
        securities (list[str]): List of security identifiers (e.g., 'AAPL US Equity').
        fields (list[str]): List of data fields to retrieve (e.g., 'PX_LAST').
        start_date (date): Start date for the historical data.
        end_date (date): End date for the historical data.
        overrides (list[tuple], optional): List of tuples for field overrides. Defaults to None.
        options (dict, optional): Additional request options. Defaults to None.

    Returns:
        pl.DataFrame: A Polars DataFrame containing the requested historical data.

    Raises:
        ConnectionError: If there is an issue with the Bloomberg session.
        ValueError: If the request parameters are invalid.

    Example:
        Fetch historical closing prices for TLT:

        ```python
        from datetime import date
        from polars_bloomberg import BQuery

        with BQuery() as bq:
            df = bq.bdh(
                ["TLT US Equity"],
                ["PX_LAST"],
                start_date=date(2019, 1, 1),
                end_date=date(2019, 1, 7),
            )
        print(df)
        ```

        Expected output:
        ```python
        shape: (4, 3)
        ┌───────────────┬────────────┬─────────┐
        │ security      ┆ date       ┆ PX_LAST │
        │ ---           ┆ ---        ┆ ---     │
        │ str           ┆ date       ┆ f64     │
        ╞═══════════════╪════════════╪═════════╡
        │ TLT US Equity ┆ 2019-01-02 ┆ 122.15  │
        │ TLT US Equity ┆ 2019-01-03 ┆ 123.54  │
        │ TLT US Equity ┆ 2019-01-04 ┆ 122.11  │
        │ TLT US Equity ┆ 2019-01-07 ┆ 121.75  │
        └───────────────┴────────────┴─────────┘
        ```

    """  # noqa: E501
    request = self._create_request(
        "HistoricalDataRequest", securities, fields, overrides, options
    )
    request.set("startDate", start_date.strftime("%Y%m%d"))
    request.set("endDate", end_date.strftime("%Y%m%d"))
    responses = self._send_request(request)
    data = self._parse_bdh_responses(responses, fields)
    return pl.DataFrame(data)

bdp(securities, fields, overrides=None, options=None)

Bloomberg Data Point, equivalent to Excel BDP() function.

Fetch reference data for given securities and fields.

Parameters:

Name Type Description Default
securities list[str]

List of security identifiers (e.g. 'AAPL US Equity').

required
fields list[str]

List of data fields to retrieve (e.g., 'PX_LAST').

required
overrides list[tuple]

List of tuples for field overrides. Defaults to None.

None
options dict

Additional request options. Defaults to None.

None

Returns:

Type Description
DataFrame

pl.DataFrame: A Polars DataFrame containing the requested reference data.

Raises:

Type Description
ConnectionError

If there is an issue with the Bloomberg session.

ValueError

If the request parameters are invalid.

Example

Fetch last price for Apple and Microsoft stocks:

from polars_bloomberg import BQuery

with BQuery() as bq:
    df = bq.bdp(['AAPL US Equity', 'MSFT US Equity'], ['PX_LAST'])
print(df)

Expected output:

shape: (2, 2)
┌────────────────┬──────────┐
│ security       ┆ PX_LAST  │
│ ---            ┆ ---      │
│ str            ┆ f64      │
╞════════════════╪══════════╡
│ AAPL US Equity ┆ 171.32   │
│ MSFT US Equity ┆ 232.33   │
└────────────────┴──────────┘
Source code in polars_bloomberg\plbbg.py
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def bdp(
    self,
    securities: list[str],
    fields: list[str],
    overrides: list[tuple] | None = None,
    options: dict | None = None,
) -> pl.DataFrame:
    """Bloomberg Data Point, equivalent to Excel BDP() function.

    Fetch reference data for given securities and fields.

    Args:
        securities (list[str]): List of security identifiers (e.g. 'AAPL US Equity').
        fields (list[str]): List of data fields to retrieve (e.g., 'PX_LAST').
        overrides (list[tuple], optional): List of tuples for field overrides. Defaults to None.
        options (dict, optional): Additional request options. Defaults to None.

    Returns:
        pl.DataFrame: A Polars DataFrame containing the requested reference data.

    Raises:
        ConnectionError: If there is an issue with the Bloomberg session.
        ValueError: If the request parameters are invalid.

    Example:
        Fetch last price for Apple and Microsoft stocks:

        ```python
        from polars_bloomberg import BQuery

        with BQuery() as bq:
            df = bq.bdp(['AAPL US Equity', 'MSFT US Equity'], ['PX_LAST'])
        print(df)
        ```

        Expected output:
        ```python
        shape: (2, 2)
        ┌────────────────┬──────────┐
        │ security       ┆ PX_LAST  │
        │ ---            ┆ ---      │
        │ str            ┆ f64      │
        ╞════════════════╪══════════╡
        │ AAPL US Equity ┆ 171.32   │
        │ MSFT US Equity ┆ 232.33   │
        └────────────────┴──────────┘
        ```

    """  # noqa: E501
    request = self._create_request(
        "ReferenceDataRequest", securities, fields, overrides, options
    )
    responses = self._send_request(request)
    data = self._parse_bdp_responses(responses, fields)
    return pl.DataFrame(data)

bql(expression)

Execute a Bloomberg Query Language (BQL) query.

BQL is Bloomberg's domain-specific language for complex financial queries. It allows for advanced data retrieval, screening, and analysis.

Parameters:

Name Type Description Default
expression str

The BQL query expression to execute. Can include functions like get(), let(), for(), filter(), etc.

required

Returns:

Name Type Description
BqlResult BqlResult

An object containing: - List of Polars DataFrames (one for each item in BQL get statement) - Helper methods like combine() to merge DataFrames on common columns

Raises:

Type Description
ConnectionError

If there is an issue with the Bloomberg session.

ValueError

If the BQL query syntax is invalid.

Example

Simple query to fetch last price:

from polars_bloomberg import BQuery

with BQuery() as bq:
    # Get last price for multiple securities
    result = bq.bql("get(px_last) for(['IBM US Equity', 'MSFT US Equity'])")
    df = result.combine()
    print(df)

Expected output:

shape: (2, 4)
┌───────────────┬─────────┐
│ ID            ┆ PX_LAST │
│ ---           ┆ ---     │
│ str           ┆ f64     │
╞═══════════════╪═════════╡
│ AAPL US Equity┆ 150.25  │
│ MSFT US Equity┆ 250.80  │
└───────────────┴─────────┘

Access individual DataFrames:

>>> df_px_last = result[0]
>>> print(df_px_last)
shape: (2, 2)
┌───────────────┬─────────┐
│ ID            ┆ PX_LAST │
│ ---           ┆ ---     │
│ str           ┆ f64     │
╞═══════════════╪═════════╡
│ AAPL US Equity┆ 150.25  │
│ MSFT US Equity┆ 250.80  │
└───────────────┴─────────┘

Fetch multiple fields and combine results:

>>> result = bq.bql("get(px_last, px_volume) for('AAPL US Equity')")
>>> df_combined = result.combine()
>>> print(df_combined)
shape: (1, 3)
┌───────────────┬─────────┬────────────┐
│ ID            ┆ PX_LAST ┆ PX_VOLUME  │
│ ---           ┆ ---     ┆ ---        │
│ str           ┆ f64     ┆ f64        │
╞═══════════════╪═════════╪════════════╡
│ AAPL US Equity┆ 150.25  ┆ 30000000.0 │
└───────────────┴─────────┴────────────┘

Iterate over individual DataFrames:

>>> for df in result:
...     print(df)
Source code in polars_bloomberg\plbbg.py
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
def bql(self, expression: str) -> BqlResult:
    """Execute a Bloomberg Query Language (BQL) query.

    BQL is Bloomberg's domain-specific language for complex financial queries. It allows
    for advanced data retrieval, screening, and analysis.

    Args:
        expression (str): The BQL query expression to execute. Can include functions like
            get(), let(), for(), filter(), etc.

    Returns:
        BqlResult: An object containing:
            - List of Polars DataFrames (one for each item in BQL get statement)
            - Helper methods like combine() to merge DataFrames on common columns

    Raises:
        ConnectionError: If there is an issue with the Bloomberg session.
        ValueError: If the BQL query syntax is invalid.

    Example:
        Simple query to fetch last price:

        ```python
        from polars_bloomberg import BQuery

        with BQuery() as bq:
            # Get last price for multiple securities
            result = bq.bql("get(px_last) for(['IBM US Equity', 'MSFT US Equity'])")
            df = result.combine()
            print(df)
        ```

        Expected output:
        ```python
        shape: (2, 4)
        ┌───────────────┬─────────┐
        │ ID            ┆ PX_LAST │
        │ ---           ┆ ---     │
        │ str           ┆ f64     │
        ╞═══════════════╪═════════╡
        │ AAPL US Equity┆ 150.25  │
        │ MSFT US Equity┆ 250.80  │
        └───────────────┴─────────┘
        ```

        Access individual DataFrames:
        ```python
        >>> df_px_last = result[0]
        >>> print(df_px_last)
        shape: (2, 2)
        ┌───────────────┬─────────┐
        │ ID            ┆ PX_LAST │
        │ ---           ┆ ---     │
        │ str           ┆ f64     │
        ╞═══════════════╪═════════╡
        │ AAPL US Equity┆ 150.25  │
        │ MSFT US Equity┆ 250.80  │
        └───────────────┴─────────┘
        ```
        Fetch multiple fields and combine results:
        ```python
        >>> result = bq.bql("get(px_last, px_volume) for('AAPL US Equity')")
        >>> df_combined = result.combine()
        >>> print(df_combined)
        shape: (1, 3)
        ┌───────────────┬─────────┬────────────┐
        │ ID            ┆ PX_LAST ┆ PX_VOLUME  │
        │ ---           ┆ ---     ┆ ---        │
        │ str           ┆ f64     ┆ f64        │
        ╞═══════════════╪═════════╪════════════╡
        │ AAPL US Equity┆ 150.25  ┆ 30000000.0 │
        └───────────────┴─────────┴────────────┘
        ```
        Iterate over individual DataFrames:
        ```python
        >>> for df in result:
        ...     print(df)
        ```

    """  # noqa: E501
    request = self._create_bql_request(expression)
    responses = self._send_request(request)
    tables = self._parse_bql_responses(responses)
    dataframes = [
        pl.DataFrame(table.data, schema=table.schema, strict=True)
        for table in tables
    ]
    names = [table.name for table in tables]
    return BqlResult(dataframes, names)

polars_bloomberg.BqlResult dataclass

Holds the result of a BQL query as a list of Polars DataFrames.

This class encapsulates the results of a Bloomberg Query Language (BQL) query, providing methods to access and manipulate the data.

Attributes:

Name Type Description
dataframes list[DataFrame]

List of query result dataframes.

names list[str]

List of data-item names corresponding to dataframes.

Example

Execute a BQL query and combine the results:

from polars_bloomberg import BQuery

with BQuery() as bq:
    result = bq.bql("get(px_last) for(['IBM US Equity', 'MSFT US Equity'])")
    df = result.combine()
    print(df)

Expected output:

shape: (2, 4)
┌───────────────┬─────────┐
│ ID            ┆ PX_LAST │
│ ---           ┆ ---     │
│ str           ┆ f64     │
╞═══════════════╪═════════╡
│ IBM US Equity ┆ 125.34  │
│ MSFT US Equity┆ 232.33  │
└───────────────┴─────────┘

Iterate over the list of DataFrames:

for df in result:
    print(df)

Access individual DataFrames by index:

first_df = result[0]
print(first_df)

Get the number of DataFrames:

num_dfs = len(result)
print(f"Number of DataFrames: {num_dfs}")

Methods:

Name Description
combine

Combine all dataframes into one by joining on common columns.

Source code in polars_bloomberg\plbbg.py
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
@dataclass
class BqlResult:
    """Holds the result of a BQL query as a list of Polars DataFrames.

    This class encapsulates the results of a Bloomberg Query Language (BQL) query,
    providing methods to access and manipulate the data.

    Attributes:
        dataframes (list[pl.DataFrame]): List of query result dataframes.
        names (list[str]): List of data-item names corresponding to dataframes.

    Example:
        Execute a BQL query and combine the results:

        ```python
        from polars_bloomberg import BQuery

        with BQuery() as bq:
            result = bq.bql("get(px_last) for(['IBM US Equity', 'MSFT US Equity'])")
            df = result.combine()
            print(df)
        ```

        Expected output:
        ```python
        shape: (2, 4)
        ┌───────────────┬─────────┐
        │ ID            ┆ PX_LAST │
        │ ---           ┆ ---     │
        │ str           ┆ f64     │
        ╞═══════════════╪═════════╡
        │ IBM US Equity ┆ 125.34  │
        │ MSFT US Equity┆ 232.33  │
        └───────────────┴─────────┘
        ```

        Iterate over the list of DataFrames:

        ```python
        for df in result:
            print(df)
        ```

        Access individual DataFrames by index:

        ```python
        first_df = result[0]
        print(first_df)
        ```

        Get the number of DataFrames:

        ```python
        num_dfs = len(result)
        print(f"Number of DataFrames: {num_dfs}")
        ```

    Methods:
        combine: Combine all dataframes into one by joining on common columns.

    """

    dataframes: list[pl.DataFrame]
    names: list[str]

    def combine(self) -> pl.DataFrame:
        """Combine all dataframes into one by joining on common columns.

        This method merges all the DataFrames in the `dataframes` attribute into a single
        DataFrame by performing a full join on the common columns. If no common columns
        are found, it raises a ValueError.

        Returns:
            pl.DataFrame: Combined dataframe joined on common columns.

        Raises:
            ValueError: If no common columns exist or no dataframes are present.

        Example:
            Combine results of a BQL query:

            ```python
            from polars_bloomberg import BQuery

            with BQuery() as bq:
                result = bq.bql("get(px_last, px_volume) for(['AAPL US Equity', 'MSFT US Equity'])")
                df = result.combine()
                print(df)
            ```

            Expected output:
            ```python
            shape: (2, 3)
            ┌────────────────┬──────────┬────────────┐
            │ ID             ┆ PX_LAST  ┆ PX_VOLUME  │
            │ ---            ┆ ---      ┆ ---        │
            │ str            ┆ f64      ┆ f64        │
            ╞════════════════╪══════════╪════════════╡
            │ AAPL US Equity ┆ 150.25   ┆ 30000000.0 │
            │ MSFT US Equity ┆ 250.80   ┆ 20000000.0 │
            └────────────────┴──────────┴────────────┘
            ```

            Handle no common columns:

            ```python
            with BQuery() as bq:
                result = bq.bql("get(px_last) for(['AAPL US Equity'])")
                try:
                    df = result.combine()
                except ValueError as e:
                    print(e)
            ```

            Expected output:
            ```
            No common columns found to join on.
            ```

        """  # noqa: E501
        if not self.dataframes:
            raise ValueError("No DataFrames to combine.")

        result = self.dataframes[0]  # Initialize with the first DataFrame
        for df in self.dataframes[1:]:
            common_cols = set(result.columns) & set(df.columns)
            if not common_cols:
                raise ValueError("No common columns found to join on.")
            result = result.join(df, on=list(common_cols), how="full", coalesce=True)
        return result

    def __getitem__(self, idx: int) -> pl.DataFrame:
        """Access individual DataFrames by index."""
        return self.dataframes[idx]

    def __len__(self) -> int:
        """Return the number of dataframes."""
        return len(self.dataframes)

    def __iter__(self):
        """Return an iterator over the dataframes."""
        return iter(self.dataframes)

__getitem__(idx)

Access individual DataFrames by index.

Source code in polars_bloomberg\plbbg.py
189
190
191
def __getitem__(self, idx: int) -> pl.DataFrame:
    """Access individual DataFrames by index."""
    return self.dataframes[idx]

__iter__()

Return an iterator over the dataframes.

Source code in polars_bloomberg\plbbg.py
197
198
199
def __iter__(self):
    """Return an iterator over the dataframes."""
    return iter(self.dataframes)

__len__()

Return the number of dataframes.

Source code in polars_bloomberg\plbbg.py
193
194
195
def __len__(self) -> int:
    """Return the number of dataframes."""
    return len(self.dataframes)

combine()

Combine all dataframes into one by joining on common columns.

This method merges all the DataFrames in the dataframes attribute into a single DataFrame by performing a full join on the common columns. If no common columns are found, it raises a ValueError.

Returns:

Type Description
DataFrame

pl.DataFrame: Combined dataframe joined on common columns.

Raises:

Type Description
ValueError

If no common columns exist or no dataframes are present.

Example

Combine results of a BQL query:

from polars_bloomberg import BQuery

with BQuery() as bq:
    result = bq.bql("get(px_last, px_volume) for(['AAPL US Equity', 'MSFT US Equity'])")
    df = result.combine()
    print(df)

Expected output:

shape: (2, 3)
┌────────────────┬──────────┬────────────┐
│ ID             ┆ PX_LAST  ┆ PX_VOLUME  │
│ ---            ┆ ---      ┆ ---        │
│ str            ┆ f64      ┆ f64        │
╞════════════════╪══════════╪════════════╡
│ AAPL US Equity ┆ 150.25   ┆ 30000000.0 │
│ MSFT US Equity ┆ 250.80   ┆ 20000000.0 │
└────────────────┴──────────┴────────────┘

Handle no common columns:

with BQuery() as bq:
    result = bq.bql("get(px_last) for(['AAPL US Equity'])")
    try:
        df = result.combine()
    except ValueError as e:
        print(e)

Expected output:

No common columns found to join on.
Source code in polars_bloomberg\plbbg.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
def combine(self) -> pl.DataFrame:
    """Combine all dataframes into one by joining on common columns.

    This method merges all the DataFrames in the `dataframes` attribute into a single
    DataFrame by performing a full join on the common columns. If no common columns
    are found, it raises a ValueError.

    Returns:
        pl.DataFrame: Combined dataframe joined on common columns.

    Raises:
        ValueError: If no common columns exist or no dataframes are present.

    Example:
        Combine results of a BQL query:

        ```python
        from polars_bloomberg import BQuery

        with BQuery() as bq:
            result = bq.bql("get(px_last, px_volume) for(['AAPL US Equity', 'MSFT US Equity'])")
            df = result.combine()
            print(df)
        ```

        Expected output:
        ```python
        shape: (2, 3)
        ┌────────────────┬──────────┬────────────┐
        │ ID             ┆ PX_LAST  ┆ PX_VOLUME  │
        │ ---            ┆ ---      ┆ ---        │
        │ str            ┆ f64      ┆ f64        │
        ╞════════════════╪══════════╪════════════╡
        │ AAPL US Equity ┆ 150.25   ┆ 30000000.0 │
        │ MSFT US Equity ┆ 250.80   ┆ 20000000.0 │
        └────────────────┴──────────┴────────────┘
        ```

        Handle no common columns:

        ```python
        with BQuery() as bq:
            result = bq.bql("get(px_last) for(['AAPL US Equity'])")
            try:
                df = result.combine()
            except ValueError as e:
                print(e)
        ```

        Expected output:
        ```
        No common columns found to join on.
        ```

    """  # noqa: E501
    if not self.dataframes:
        raise ValueError("No DataFrames to combine.")

    result = self.dataframes[0]  # Initialize with the first DataFrame
    for df in self.dataframes[1:]:
        common_cols = set(result.columns) & set(df.columns)
        if not common_cols:
            raise ValueError("No common columns found to join on.")
        result = result.join(df, on=list(common_cols), how="full", coalesce=True)
    return result